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O EXPLORE the ability of image-based parameters with texture parameters in the 

differentiation of bone marrow infiltration by positron emission tomography 

computed tomography (PET/CT).We retrospectively evaluated the baseline PET/CT scan of 44 

patients with histopathological proven lymphoma. Seventy-three of features were extracted using 

CGITA software and statistical analysis were carried out on SPSS program. Result of 

spearman correlation analysis revealed a strong positive correlation between conventional PET 

metrics and texture features (19 significant association features) and inverse correlation was 

found (one parameter significant association feature). Area under the curve and p-value of 

receive operating characteristics showed that (HILRE (4-bin), HILZE (64-bin), LRE (64-bin), 

LZE (64-bin), max spectrum (8-bin), busyness (64-bin),code similarity (32-bin & 64-bin)) 

were significant discriminator of bone marrow infiltration among other features 

(AUC>0.682, p<0.05). Univariate analyses of texture features showed that code similarity and 

LRE (both 64 bin) has significant prediction to BMI. Multivariate analyses revealed that LRE 

(64 bin) p= 0.031; odds ratio: 1.022; 95% CI, 1.002-1.043) were independent variables for bone 

marrow infiltration. The study concludes that a significant association emerged between PET 

features and bone marrow infiltration in lymphoma. Texture analysis on PET/CT shows 

potential to differentiate between bone marrow infiltration in patients with Lymphoma. 

Keywords: Bone marrow; Fluorodeoxyglucose F-18; Image texture; Lymphoma;  Positron 

emission tomography. 

Introduction  

Lymphoma is a heterogeneous type of disease that 

arises from the constituent cells of the immune 

system or from their precursors that arise in lymph 

nodes close to any organ or tissue in the body. 

Therefore, all organ systems may be involved at 

some stage of the disease including the central 

nervous system, head and neck, thorax, abdomen, 

gonads, and bone 1, 2. 

Imaging modalities have a fundamental role in the 

staging of lymphomas. CT is the most often used 

imaging modality for staging malignant lymphoma 

due to the fact of its massive availability and 

enormously low cost 3 but sometimes CT impedes 

identification of disease in normal-sized organs and 

detection of lesions which have poor contrast with 

the surrounding tissues. Another reason is that CT is 

not effective in diagnosis lymphoma being not 

reliable in the detection of bone marrow disease, 

which, if present, by definition indicates stage IV 

disease 4.  
18F-FDG PET/CT has an impact on the assessment 

of both newly diagnosed, prognosed and previously 

treated patients with lymphoma and also alters the 

initial clinical staging of this disease5, 6. Incidence of 

marrow disease varies with histological subtype of 

lymphoma. Bone marrow biopsy is fundamental in 

identifying marrow involvement for therapy 

purpose 7. Marrow diseases can be diagnosed with 
18F-FDG PET/CT scan and the visual interpretation 

of marrow FDG uptake throughout whole-body. 

PET scans can efficiently determine marrow disease 

status in a high proportion of lymphoma patients. 

Therefore, PET has the potential to reduce the guide 

for staging marrow biopsy 8. However, interobserver 

variability remain a limiting factor in qualitative 

image analysis. 

A high level of concordance has been observed 

between the sites of focal 18F- FDG uptake in the 

bone marrow and bone marrow biopsy. In fact, PET 

scans have demonstrated a high negative predictive 

value to exclude bone marrow involvement. This 

holds particularly true for early stage lymphoma and 

may even obviate the need for bone marrow biopsy 

in this group 9-11.  

This result if confirmed will provide two identical 

methods for diagnosis of lymphomas. However, the 

use of 18F-FDG PET/CT in the sole assessment of 

the bone marrow and whether it can replace bone 

marrow biopsy is still a topic of debate and thus 

investigation with PET/CT scan through image 
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analysis is potentially advised. 3. However, it could 

be useful to strength the diagnostic power of PET 

imaging through sophisticated data analysis using 

the recent advances in PET texture analysis.  

The aim of this study was to explore whether the 

textural features able to provide alternative or 

addition diagnostic information of bone marrow 

infiltration in patients diagnosed with lymphoma 

using 18F-FDG PET/CT.  

Material and Methods  

Patients  
A total of 44 patients (56.8% Male) whose 

histopathology proven and diagnosed with 

lymphoma were retrospectively retrieved from our 

data records. The retrospective nature of the study 

has obviated the need to ask for patient consent.  A 

committee ethical approval was obtained to perform 

the study. The inclusion criteria were those patients 

who had not prior treatment before 18F-FDG initial 

diagnosis. Bone marrow involvement were 

confirmed by two clinical observers who have 5 and 

10 years of experience in reading and interpretation 

of 18F-FDG PET/CT. The number of patients who 

had bone marrow infiltration was 18 (41%) as 

agreed by the two observers.  

PET/CT Examination  
Patients were fasted 6 h and had serum glucose 

concentration <200 mg/dl before the intravenous 

injection of 185–370 MBq of 18F-FDG (4 MBq/kg 

or 0.1 mCi/kg of body weight). 18F-FDG PET/CT 

was performed using a Gemini 64 LXL PT/CT 

scanner (Philips Medical Systems) in 7 patients, 5 

patients performed on Gemini 64 TF TOF PT/CT 

(Philips Healthcare) whereas the remaining 32 

patients were imaged on a Biograph 20 mCT 

scanner (Siemens Medical Solutions).  During 

imaging process, patients were in supine position 

with both arms extended in the cranial direction and 

breathing quietly. PET images were obtained at 2 

min/bed frame for the patient less than 60 kg, 2.5 

min/bed frame for the patients less than 90 kg and 3 

min/bed frame for the patents up to 90 kg. PET 

images were reconstructed using CT-based 

attenuation correction by an ordered-subset 

expectation maximization iterative reconstruction 

algorithm (OSEM) with a slice thickness of 3 mm, 

and a pitch of 4 mm for the Biograph mCT; and slice 

thickness of 4 mm, and a pitch of 4 mm for the both 

Philips machines.  

Feature extraction  

All images were transferred to a personal 

computer that contained Chang-Gung Image 

Texture Analysis (CGITA) toolbox version 1.4. The 

PET images were then imported into (CGITA) 

toolbox. CGITA is an open-source software code 

with a graphical user interface for texture analysis 

running on MATLAB (Math Works Inc., version  

2015a) 12.  

PET images were manually or semi-automatic 

contoured with an iso-contour threshold was set to 

an absolute SUV value of 3.0 as previously 

described 13. 

All scans were analyzed by senior residents 

independently (more than 5-year experience) and 

were interpreted by a senior radiologist (10 years of 

experience). The second step consisted of 

resampling or interpolating the non-cubic voxel 

grids into cubic voxels (2 mm) and performing 

quantization (also called discretization, down 

sampling or resampling) of the original intensities 

into a discrete set of values between the minimum 

and maximum within the VOI. This number 

determines the size of the matrices from which the 

different texture features will be subsequently 

calculated.  

A bin number of 4, 8, 16, 32 and 64 was employed 

in this study. Third, a total of seventy-three 

radiomics parameters were extracted from images 

including texture features and conventional PET 

metrics such as SUVmax, SUVmean, SUVpeak and 

TLG were extracted for each VOI. SUVpeak was 

defined as the mean SUV within 1-cm sphere 

centered on the maximum pixel 14.  

Table 1: Clinical characteristics and acquisition  
parameters of the study population. 

Pa
tie

nt
s c

ha
ra

ct
er

is
tic

s 

Age  
Median 47 year 

Mean  49.2 year 

Range 19-88 year 

Sex 
Male 25 

Female 19 

Weight  
Median 73.5 (kg) 

Range 50-110 (kg) 

Blood glucose 
Median 102.5 (mg/dl) 

Range 70-135 (mg/dl) 

Type of 
lymphoma  

HL 30 

NHL 14 

Bone marrow 
invasion by PET 

Yes 18 

No 26 
A

cq
ui

si
tio

n 
pa

ra
m

et
er

s 

Injected 
radioactivity 

(18F-FDG)  

Median 277.5 MBq 

Range 185–370 MBq 

18F-FDG uptake 
time 

Median 55 min 

Range 50-60 min 

Time per bed 
position  2-3 min 

Scan time range 16-27 min 
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Texture analysis  
Texture analysis includes first, second, and higher 

order texture methods as well as various transform-

based methods. The most “direct” features are those 

based simply on intensity values within a region of 

interest (ROI). Texture features in the lymphoma is 

based on the same parent matrices that are utilized 

in tumor sites. Examples of these include the gray-

level co-occurrence matrix (GLCM), the gray level 

run length matrix (GLRLM), the neighborhood 

intensity difference matrix (NIDM), neighborhood 

gray-level dependence matrix (NGLDM), and the 

intensity size-zone matrix (ISZM) 15-17.  

In this study, the derived features from voxels of 

the segmented PET images can be grouped into 

different categories. First-order features were 

derived from the histogram of voxel intensities 

(SUVmean, SUVmax, skewness, kurtosis, etc.). 

Second-order textural features were based on 

matrices that contained information about the 

regional spatial arrangement of the voxels such as 

their homogeneity, contrast, and coarseness 

simulating the human perception of the image. 

Higher-order features such as Grey-level run-length 

features focused on local collinear voxels with the 

same grey level. Table I in supplement material 

describes the extracted features using CGITA 

toolbox from the segmented images.  

Statistical Analysis 
Spearman rank correlations between all extracted 

features were calculated and displayed via a 

heatmap (Fig.1). Spearman correlation coefficient 

(rho) was used to evaluate the pairwise relationships 

between SUVmean, SUVmax, SUVpeak, TLG, 

surface area, and the derived 73 texture features 

including all bin sizes. Since not all the parameters 

contributed to differentiating lymphoma disease, we 

resorted to the results of operation characteristic 

curve at each bin size and to test the diagnostic 

potential of the quantitative indices including the 

conventional metrics as well as texture features in 

discrimination of bone marrow invasion 18, 19. A 

heatmap (with Pearson’s correlation coefficient 

values) was constructed to observe correlations 

among the detected constituents between each 

feature which has a strong or moderate correlation 

coefficient resulted from the Spearman test for 

different bin size. Receive operation characteristic 

curves (ROC curve) were used to select the most 

discriminative parameters in each bin size (Fig. 2).  

Specificity and sensitivity (including 95% 

confidence intervals [CIs]) for each of the 

investigated parameters were also derived and 

calculated. The Youden index is the vertical distance 

between the 45-degree line and the point on the ROC 

curve. ROC data analysis was performed. Binary 

logistic regression test was used to express results of 

univariate then multivariate analysis for those 

features of high AUC derived from ROC data plots. 

All statistical analysis was performed using SPSS 

program (IBM Corp, Armonk, New York, version 

23). A p-value of < 0.05 was defined as statistically 

significant. No adjustment for multiple comparisons 

was made in this analysis.  

Result  

Patients  
The general characteristics of the study 

participants are shown in Table 1. There were 25 

men (mean age, 53.4 years; age range 19–67 years) 

and 19 women (mean age, 39.9 years; age range 19–

88 years). Based on histopathological proof, 30 

patients had Hodgkin’s lymphoma (HL) and 14 was 

Non-Hodgkin’s lymphoma (NHL).  

PET features and statistical analysis  
Median pretreatment tumor MTV was 147.5 cm3 

(interquartile range [IQR], 89–179.2), and median 

pretreatment SUVmax was 23.1 (IQR, 14.6–29.1). 

The results of correlation of PET texture indices 

with the conventional quantitative metrics namely 

maximum SUV (SUVmax), mean SUV 

(SUVmean), tumor lesion glycolysis (TLG), 

metabolic tumor volume (MTV), SUVpeak and 

surface area are summarized in tables I and II in 

supplement material.  

A general observation was that texture features 

obtained from all bin size analyzed have shown a 

moderate to strong correlation with conventional 

PET metrics. Spearman’s rank correlation 

coefficients (rho) has ranged from 0.50 to 0.97 for 

positive correlation and ranged from -0.52 to -0.97 

for the inverse correlation.  
A heat map depicting the absolute value of  

Pearson’s correlation coefficients between all pairs 

of textural PET features is shown in Figure 1. 

Correlation exceeded 0.8 (strong correlation 

coefficient) for 23.3% of feature pairs (17 variables 

in between 73 features) and exceeded 0.5 (moderate 

correlation coefficient) for 19.2% of feature pairs 

(14 variables in between 73 features). Many features 

were highly correlated with TLG such as contrast, 

entropy, homogeneity, dissimilarity, inverse 

difference moment and MTV; on another hand, 

MTV was highly correlated with features of 

contrast, entropy, homogeneity, dissimilarity, 

inverse difference moment, intensity variability, 

run-length variability and TLG; also SUVmax was 

highly correlated with mean SUV, SUV variance 

and SUV SD.  

The AUC from ROC analysis was determined for 

every texture index. Out of the complete 73 textural 

features derived from CGITA, it was found that 8 

textural features had AUC significantly higher than 

0.6 (p<0.05) for bin size 4, 8, 32 and 64 while data 

derived from 16 bin have not contained any 

significant results. 

Role of Texture Analysis and Radiomics in Prediction of Bone Marrow Infiltration 45 

Egypt. J. Biophys. Biomed. Eng., Vol. 21 (2020) 



 M
A

H
M

O
U

D
 A

. K
E

N
A

W
Y

 et a
l. 1

 
Seco

n
d

 an
gu

lar m
o

m
en

t_4
b

in
 

4
4

 
In

verse d
ifferen

ce m
o

m
en

t_3
2

b
in

 
2

 
C

o
n

trast_4
b

in
 

4
5

 
M

in
im

u
m

 SU
V

 
3

 
H

o
m

o
gen

eity_4
b

in
 

4
6

 
M

axim
u

m
 SU

V
 

4
 

D
issim

ilarity_4
b

in
 

4
7

 
M

ean
 SU

V
 

5
 

In
verse d

ifferen
ce m

o
m

en
t_4

b
in

 
4

8
 

SU
V

 V
arian

ce 
6

 
Lo

n
g ru

n
 em

p
h

asis_4
b

in
 

4
9

 
SU

V
 SD

 
7

 
In

ten
sity variab

ility_4
b

in
 

5
0

 
TLG

 
8

 
R

u
n

 len
gth

 variab
ility_4

b
in

 
5

1
 

Tu
m

o
r vo

lu
m

e 
9

 
Lo

w
 in

ten
sity lo

n
g ru

n
 em

p
h

asis_4
b

in
 

5
2

 
SU

V
p

eak 
1

0
 

H
igh

 in
ten

sity lo
n

g ru
n

 em
p

h
asis_4

b
in

 
5

3
 

Su
rface area 

1
1

 
B

u
syn

ess_4
b

in
 

5
4

 
Sh

o
rt ru

n
 em

p
h

asis_3
2

b
in

 
1

2
 

A
sp

h
ericity_4

b
in

 
5

5
 

Lo
n

g ru
n

 em
p

h
asis_3

2
b

in
 

1
3

 
C

o
n

trast_8
b

in
 

5
6

 
In

ten
sity variab

ility_3
2

b
in

 
1

4
 

H
o

m
o

gen
eity_8

b
in

 
5

7
 

R
u

n
 len

gth
 variab

ility_3
2

b
in

 
1

5
 

D
issim

ilarity_8
b

in
 

5
8

 
Lo

w
 in

ten
sity lo

n
g ru

n
 em

p
h

asis_3
2

b
in

 
1

6
 

In
verse d

ifferen
ce m

o
m

en
t_8

b
in

 
5

9
 

B
u

syn
ess_3

2
b

in
 

1
7

 
In

ten
sity variab

ility_8
b

in
 

6
0

 
Large zo

n
e em

p
h

asis_3
2

b
in

 
1

8
 

R
u

n
 len

gth
 variab

ility_8
b

in
 

6
1

 
In

ten
sity variab

ility_A
_3

2
b

in
 

1
9

 
Lo

w
 in

ten
sity lo

n
g ru

n
 em

p
h

asis_8
b

in
 

6
2

 
Size zo

n
e variab

ility_3
2

b
in

 
2

0
 

Large zo
n

e em
p

h
asis_8

b
in

 
6

3
 

Lo
w

 in
ten

sity large zo
n

e em
p

h
asis_3

2
b

in
 

2
1

 
Lo

w
 in

ten
sity large zo

n
e em

p
h

asis_8
b

in
 

6
4

 
H

igh
 in

ten
sity large zo

n
e em

p
h

asis_3
2

b
in

 
2

2
 

H
igh

in
ten

sitylargezo
n

eem
p

h
asis_8

b
in

 
6

5
 

A
sp

h
ericity_3

2
b

in
 

2
3

 
N

u
m

b
ern

o
n

u
n

ifo
rm

ity_8
b

in
 

6
6

 
Large n

u
m

b
er em

p
h

asis_3
2

b
in

 
2

4
 

Seco
n

d
m

o
m

en
t_8

b
in

 
6

7
 

N
u

m
b

er n
o

n
u

n
ifo

rm
ity_3

2
b

in
 

2
5

 
Seco

n
d

an
gu

larm
o

m
en

t_1
6

b
in

 
6

8
 

Seco
n

d
 m

o
m

en
t_3

2
b

in
 

2
6

 
C

o
n

trast_1
6

b
in

 
6

9
 

Seco
n

d
 an

gu
lar m

o
m

en
t_6

4
b

in
 

2
7

 
H

o
m

o
gen

eity_1
6

b
in

 
7

0
 

C
o

n
trast_6

4
b

in
 

2
8

 
D

issim
ilarity_1

6
b

in
 

7
1

 
H

o
m

o
gen

eity_6
4

b
in

 
2

9
 

In
versed

ifferen
cem

o
m

en
t_1

6
b

in
 

7
2

 
D

issim
ilarity_6

4
b

in
 

3
0

 
Lo

n
g ru

n
 em

p
h

asis_1
6

b
in

 
7

3
 

In
verse d

ifferen
ce m

o
m

en
t_6

4
b

in
 

3
1

 
In

ten
sity variab

ility_1
6

b
in

 
7

4
 

Lo
n

g ru
n

 em
p

h
asis_6

4
b

in
 

3
2

 
R

u
n

 len
gth

 variab
ility_1

6
b

in
 

7
5

 
In

ten
sity variab

ility_6
4

b
in

 
3

3
 

Lo
w

 in
ten

sity ru
n

 em
p

h
asis_1

6
b

in
 

7
6

 
R

u
n

 len
gth

 variab
ility_6

4
b

in
 

3
4

 
Lo

w
 in

ten
sity lo

n
g ru

n
 em

p
h

asis_1
6

b
in

 
7

7
 

Lo
w

 in
ten

sity lo
n

g ru
n

 em
p

h
asis_6

4
b

in
 

3
5

 
In

ten
sity variab

ility_1
6

b
in

 
7

8
 

B
u

syn
ess_6

4
b

in
 

3
6

 
Size zo

n
e variab

ility_1
6

b
in

 
7

9
 

Large zo
n

e em
p

h
asis_6

4
b

in
 

3
7

 
A

sp
h

ericity_1
6

b
in

 
8

0
 

In
ten

sity variab
ility_A

_6
4

b
in

 
3

8
 

N
u

m
b

er n
o

n
-u

n
ifo

rm
ity_1

6
b

in
 

8
1

 
Size zo

n
e variab

ility_6
4

b
in

 
3

9
 

Seco
n

d
 m

o
m

en
t_1

6
b

in
 

8
2

 
Lo

w
 in

ten
sity large zo

n
e em

p
h

asis_6
4

b
in

 
4

0
 

Seco
n

d
 an

gu
lar m

o
m

en
t_3

2
b

in
 

8
3

 
H

igh
 in

ten
sity large zo

n
e em

p
h

asis_6
4

b
in

 
4

1
 

C
o

n
trast_3

2
b

in
 

8
4

 
Large n

u
m

b
er em

p
h

asis_6
4

b
in

 
4

2
 

H
o

m
o

gen
eity_3

2
b

in
 

8
5

 
N

u
m

b
er n

o
n

-u
n

ifo
rm

ity_6
4

b
in

 
4

3
 

D
issim

ilarity_3
2

b
in

 
8

6
 

Seco
n

d
 m

o
m

en
t_6

4
b

in
 

Figure 1. H
eatm

ap
 d

ep
ictin

g
 ab

so
lu

te v
alu

e o
f S

p
earm

an
 co

rrelatio
n

 co
efficien

ts b
etw

een
 p

airs o
f tex

tu
ral featu

res. C
o

rrelo
g
ram

 after m
u

ltip
le co

m
p

ariso
n

 co
rrectio

n
 (P

 <
 

0
.0

5
). C

o
rrelo

g
ram

 sh
o

w
s clo

se asso
ciatio

n
 o

f d
ifferen

t featu
res to

 each
 o

th
er. C

o
rrelatio

n
 co

e
fficien

ts are ex
p

ressed
 b

y
 co

lo
r scale fro

m
 red

 to
 g

reen
. T

h
e d

ark
 

g
reen

 co
lo

rs rep
resen

t stro
n

g
 p

o
sitiv

e co
rrelatio

n
s (clo

se to
 1

), th
e d

ark
 red

 rep
resen

t stro
n
g

 in
v

erse co
rrelatio

n
s (clo

se to
 -1

). T
h

e lig
h

t/o
ran

g
 rep

resen
t an

 ab
sen

ce 

o
f co

rrelatio
n

 (clo
se to

 0
). 

4
6
 

E
g

yp
t. J. B

io
p

h
ys. B

io
m

ed
. E

n
g

., V
ol. 21

 (2
0

2
0

) 



  

Table 2 describes the texture features that showed 

significant AUC higher than 0.6 (p<0.05). The ROC 

curves of the significant data are shown in figure 2. 

Along all significant data, code similarity had higher 

AUC with sensitivity of (55.6% and 50%) and 

specificity of (84.6% and 88.5%) for 32 and 64 bin 

respectively.  

Univariate and Multivariate binary logistic 
regression (UVA and MVA)  
Univariate binary logistic regression analysis 

performed for those features of high AUC derived 

from ROC data plots then to attest whether the above 

factors,  which had prognostic values  for survivals 

in univariate analysis would have independent 

prognostic significances,  multivariate analysis was 

conducted. The results were recorded in Table 3. In 

univariate binary logistic analysis 2 textural features 

showed statistically significant association with 

bone infiltration whereas multivariate analysis 

yielded one texture feature (LRE (64 bin), p= 0.031; 

OR 1.022; 95% CI, 1.002-1.043) showed 

statistically significant association with bone 

infiltration. The set of variables in the MVA 

included all the significant variables in the 

univariate setting, using forward likelihood method. 

Discussion  

The tumor is composed of a heterogeneous cell 

population rather than a homogeneous one, with 

distinct molecular and phenotypic characteristics 20. 

Biological intra-tumoral heterogeneity is may be the 

main reason for resistance to treatment 21. Image-

based assessment of metabolic intra-tumoral 

heterogeneity is based on the hypothesis that it may 

be a projection of underlying tumor biology, 

including glucose metabolism, necrosis, 

oxygenation, vascularization and angiogenesis 22.  

With the heightened interest in measurement of 

metabolic intra-tumoral heterogeneity by texture 

analysis, a number of clinical studies have reported 

that texture features from PET images have more 

prognostic ability than conventional SUV 

parameters in various cancers 23-25.  Although, 

researchers cannot interpret texture features in an 

intuitive way, because texture features merely offer 

a physical and mathematical explanation of images 

that can be interpreted as not only heterogeneous, 

but also smooth, coarse, rough, or grainy 26.  

Further, it has not been easy to find a consensus 

regarding the parameter that best represents intra-

tumoral heterogeneity. Therefore, an integrated 

radiomics approach that departs from the traditional 

approach is required.  

As it was explained in previously, quantitative 

features are descriptors extracted from the images 

using computational mathematical algorithms. The 

extracted features from PET/CT images using 

different matrices include the gray-level co-

occurrence matrix (GLCM), the gray level run 

length matrix (GLRLM), the neighborhood intensity 

difference matrix (NIDM), neighborhood gray-level 

dependence matrix (NGLDM), and the intensity 

size-zone matrix (ISZM) 12, 27.   

The hypothesis of this study was to find a 

correlation between tumor texture heterogeneity as 

revealed by radiomics analysis of primary 

lymphomatous lesion and bone marrow 

involvement. The use of texture features in 

differentiating between tumor cells of low or high 

metastatic spread could be a key tool in bone 

marrow involvement or at least serve as an adjunct 

in improving the diagnostic performance of 18F-

FDG PET/CT in staging and management of 

lymphoma patients. 18F-FDG PET/CT plays an 

important role in diagnosis, staging, treatment 

monitoring, prognosis and assessment of lymphoma 
28. Also, a heterogeneity metric can only have 

complementary (or higher significant association) 

value if it is not highly correlated with the 

corresponding volume 29. The correlation between 

heterogeneity metrics and the conventional PET 

indices showed significant association for twenty- 

one parameters (rho ≥0.7) which have strong correl- 

Table 2. Sensitivity, specificity and area under the curve (AUC) results of receiver operating 

characteristics (ROC) demonstrated for those parameters that showed a statistically significant 

area greater than 0.5. 

Variable Bin 
size Sens. Spec. Criterion AUC Lower 

Bound 
Upper 
Bound Sig. 

High-intensity long-run 

emphasis 
4 66.7 76.9 >74.23 0.739 0.587 0.891 0.008 

High-intensity large-

zone emphasis 
64 55.6 84.6 >140111.2 0.718 0.563 0.873 0.015 

Code Similarity 32 55.6 84.6 ≤0.005 0.714 0.553 0.874 0.017 

Max spectrum 8 44.4 88.5 >0.126 0.682 0.522 0.842 0.042 

Long run emphasis 64 61.1 76.9 >39.36 0.709 0.554 0.865 0.019 

Code Similarity 64 50 88.5 ≤0.008 0.707 0.548 0.867 0.021 

Busyness 64 77.8 65.4 >2.262 0.705 0.535 0.875 0.022 

Large-zone emphasis 64 61.1 76.9 >99688.3 0.701 0.541 0.861 0.025 
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ation coefficient and sixteen parameters with 

moderate correlation (0.7>rho≥0.5). Bone marrow 

biopsy has been the conventional method of 

assessment of bone marrow infiltration. It has 

several staging, treatment and prognostic 

implications 30. Limitation of bone marrow biopsy 

include site-dependence, discordance in 

morphology between lymphomatous cells in 

extramedullary sites and those cells in the bone 

marrow 31. In addition, histologic data may report a 

different pathologic non-lymphoma related 

malignancy or disorder as well as its invasive nature, 

pain and clinician expertise. Other drawbacks 

include extra medical staff, sample fixation and 

decalcification besides more stay in the clinic. Not 

more likely but also add some burden to the 

examination is the addition of trephine biopsy with  

 

 

 

 

 

 

 

 

 

 

 

 

 

bone marrow aspiration that may cause some 

adverse events including hemorrhage and morbidity 
32.  Another major shortcoming is the likelihood of 

missing focal disease as biopsy normally doesn’t 

cover the entire portion of bone marrow. These 

shortcomings of bone marrow biopsy are 

stimulating to find out alternative methods that 

obviate the need for such procedures while able to 

provide at least equivalent if not better diagnostic 

performance. However, 18F-FDG PET/CT has 

several advantages in this context including full 

body coverage, less invasive, precise local 

assessment of diffuse versus focal infiltration using 

anatomical features as well as possibility of 

quantitative data interpretation. The current study 

focuses on the later advantage using not only the 

conventional PET metrics but also incorporates the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Univariate and Multivariate binary logistic regression analysis performed for those features of high 

AUC derived from ROC data plots. 
  Univariate analysis 

Risk factors p-value Odds Ratio (95% CI) 
Lower Bound Upper Bound 

Busyness (64 bin) 0.590 1.011 0.971 1.052 

Large-zone emphasis (64 bin) 0.362 1.000 1.000 1.000 

High-intensity large-zone emphasis (64 bin) 0.340 1.000 1.000 1.000 

Max spectrum (8 bin) 0.143 28.45 0.32 2525.05 

High-intensity long-run emphasis (4 bin) 0.102 1.010 0.991 1.023 

Code Similarity (32 bin) 0.100 1.000 1.000 1.000 

Code Similarity (64 bin) 0.039* 1.000 1.000 1.000 

Long run emphasis (64 bin) 0.025* 1.021 1.043 1.043 

Multivariate analysis 
Long run emphasis (64 bin) 0.031* 1.022 1.002 1.043 

*  Significant at type I error of 5%. CI = confidence interval. 

Figure 2. ROC curves of the PET heterogeneity indices. It was observed that the texture features had higher 

discriminative power than the conventional PET metrics. 
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new advances in texture feature analysis or 

radiomics data extraction.  

The replacement of 18F-FDG PET/CT to bone 

marrow biopsy is still a matter of active debate. 

However, the quantitative capacity and recent 

advances in radiomics data analysis open up new 

avenues in this context. The present paper has been 

designed to find out the major PET feature that could 

be utilized in future studies as benchmark or evident 

source in eliciting more biological characteristics of 

bone marrow invasion. Several researches have 

confirmed a relation between greater FDG uptake 

and more aggressive course of malignancy in 

lymphoma 33, 34.  

The resulting significant features confirmed that 
18F-FDG PET images have advantages of combining 

practical and anatomical information which is 

regarded as contemporary trendy reference for the 

management of lymphomas 35. In other study, when 

looking into the prognostic performance of the 

texture data, MTV was found the most statistically 

significant parameters that have shown the largest 

correlation coefficient 29. A recent report looking at 

the differences that arise from tumor volume 

segmentation has shown that low MTV had a 

significantly longer progression free survival and 

overall survival compared to patients with high 

MTV. These findings were obtained regardless of 

the segmentation methods used 36.  

The conventional PET indices (also extracted 

features calculated from SUV) in calculation 

depends on radioactivity concentration measured by 

the PET scanner within a region of interest (ROI) 

(18F-FDG uptake interior contoured lesion) 37, and 

biopsy (i.e. pathological sample) is the gold standard 

for determining tumor genetics 38; also genomic 

features of gene expression and pathways can be 

predicted by FDG uptake features from the lesion 39.  

Therefore, the correlation between conventional 

matrix (such as SUV mean, SUV max, TLG) and 

quantitative features from PET images (especially 

those with strong correlation) can be considered a 

positive result to replace these features instead of 

guided biopsy to prevent delaying diagnosis and 

other associated complications described earlier. 

While ROC analysis could provide a static 

assessment of risk identification through cut-off 

points that maximize sensitivity and specificity, it 

can provide important information about diagnostic 

test performance 40, 41.  

In this work, the event in ROC curve depends on 

the presence or absence of bone marrow infiltration 

for every individual patient. By comparing AUC of 

ROC curves of texture parameters, we found that 

texture parameters presented could have strong 

discriminating capabilities in identifying patients 

who have bone marrow infiltration. This effective 

diagnostic capacity was statistically absent in the 

conventional and standard method of quantitation 

including SUVmax, SUVmean, SUVpeaks, TLG 

and MTV.  

Also in between significant parameters, high-

intensity large zone emphasis (HILRE) achieved the 

highest AUC (0.718, CI 0.563-0.873)) among all 

significant data of ROC curves. Long run emphasis, 

however, has a significant strong correlation with 

metabolic volume which might underscore its 

performance in bone marrow involvement. 18F-FDG 

PET/CT has been widely used for lymphoma 

diagnosis as the specificity and sensitivity have 

higher indications in lymphoma regions especially 

in the initial staging procedures 11, 42.   

In fact, second order and high-order statistics (i.e., 

based on gray-level matrix, nearest neighbor spatial 

dependence matrices, voxel-alignment matrix, 

intensity size-zone matrix, texture feature coding co-

occurrence matrix, etc.) provide information from 

the spatial relationship of image voxels. Moreover, 

a multitude features may be derived from the gray-

level matrices to characterize the structure of interest 
43. These features are independent of tumor position, 

orientation, size, and brightness and consider the 

local intensity-spatial distribution 44.  

Based on the ROC curves, the results showed that 

high-intensity long-run emphasis (HILRE 4bin) 
long-run emphasis (LRE 64 bin) (i.e. voxel-

alignment matrix 45), high-intensity large-zone 

emphasis (HILZE 64 bin), large-zone emphasis 

(LZE 64 bin) (i.e. intensity size-zone matrix 46), max 

spectrum (8 bin) (i.e. spectrum matrix) 47, busyness 

(64 bin) (neighborhood gray intensity difference 

matrix 48), code similarity (32 bin and 64 bin) 

(coding co-occurrence matrix 49) were significant 

predictors of bone marrow infiltration (p < 0.05). 

These features were extracted from the second and 

higher-order matrix, highlighting the relevance of 

voxel arrangement and their spatial correlation to the 

underlying biological processes of bone marrow 

infiltration.  

To our knowledge, this finding has not been 

reported in the literature. Busyness extracted from 

contoured PET images offered a greater 

discriminatory power marked by higher accuracy, 

specificity, and sensitivity than commonly used 

quantitative metrics such as SUVmax which was not 

significant in this study. It has been reported that the 

NGIDM texture features was able to differentiate 

malignant pulmonary nodules 50. The enhancement 

in discriminatory performance shown in this study 

could benefit patients by preventing the high false-

positive rate of PET for FDG uptake regions.  

One limitation of the present study was the 

pathological guidance of bone marrow infiltration in 

the selected patient cohort. This should be tackled in 

validation studies investigating the role of texture 

feature analysis in diagnosing bone marrow 

infiltration in lymphoma patients. Future studies are 

therefore highly warranted to confirm the 
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performance of the texture data described here with 

special emphasis placed on code similarity and long 

run emphasis. 

Conclusion  

In conclusion, this study confirmed that FDG PET 

textural parameters have an effective role to 

differentiate lymphoma disease with bone marrow 

infiltration so, study proposed a new method for 

differentiating lymphoma disease. More 

investigations are highly warranted to combine the 

role of texture analysis in providing additional 

diagnostic as well as prognostic values to 18F-FDG 

PET/CT in initial staging of patient with lymphoma. 
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Table S.I. Summary of the texture feature extracted from CGITA package. 
Parent matrix Feature measure 
Co-occurrence matrix [4] Second angular moment, contrast, entropy, homogeneity, 

dissimilarity, inverse difference moment.  

Voxel-alignment matrix [5] Short-run emphasis, long-run emphasis, intensity variability, 
run-length variability, run percentage, low-intensity run 
emphasis, high-intensity run emphasis, low-intensity short-
run emphasis, high-intensity short-run emphasis, low-
intensity long-run emphasis, high-intensity long-run 
emphasis.  

Neighborhood intensity 
difference matrix [6] 

Coarseness, contrast, busyness, complexity, strength.  

Intensity size-zone matrix [7] Short-zone emphasis, large-zone emphasis, intensity 
variability, size-zone variability, zone percentage, low-
intensity zone emphasis, high-intensity zone emphasis, low-
intensity short-zone emphasis, high-intensity short-zone 
emphasis, low-intensity large-zone emphasis, high-intensity 
large-zone emphasis.  

Normalized co-occurrence 
matrix [4] 

Second angular moment, contrast, entropy, homogeneity, 
inverse difference moment, dissimilarity, correlation. 

Voxel statistics  Minimum SUV, maximum SUV, mean SUV, SUV variance, SUV 
SD, SUV skewness, SUV kurtosis, SUV skewness (bias 
corrected), SUV kurtosis (bias corrected), TLG, tumor volume, 
entropy, SULpeak 

Texture spectrum [8] Max spectrum, Black-white symmetry. 

Texture feature coding [9] Coarseness, homogeneity, mean convergence Second angular 
moment, contrast, entropy, homogeneity, intensity, inverse 
difference moment, correlation, variance, code similarity.  

Texture feature coding co-
occurrence matrix [9] 

Second angular moment, contrast, entropy, homogeneity, 
intensity, inverse difference moment, correlation, variance, 
code entropy.  

Neighborhood gray-level 
dependence [10] 

Small-number emphasis, large-number emphasis, number 
non-uniformity, second moment, entropy.  
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Table S.II. Spearman correlation between texture features and the most commonly used PET quantitative metrics. 

The table shows variable degree of associations being highest and strong correlation coefficient. 
Strong correlation  

Variable 
Correlation Coefficient (Spearman’s rho, ρ) 

TLG 
4 8 16 32 64 

Contrast 0.829 0.855 0.854 0.854 0.855 

Entropy -0.798 -0.798 -0.780 -0.763 -0.727 

Homogeneity 0.790 0.784 0.754 0.731 0.701 

Dissimilarity 0.825 0.847 0.849 0.848 0.852 

Inverse difference moment 0.790 0.779 0.732 0.707 0.702 

Tumor volume 0.792 0.792 0.789 0.796 0.792 

 Surface area 

A sphericity 0.798 0.798 0.797 0.793 0.798 

 MTV 

Contrast 0.859 0.849 0.813 0.801 0.795 

Entropy -0.967 -0.969 -0.969 -0.969 -0.946 

Homogeneity 0.970 0.969 0.961 0.950 0.909 

Dissimilarity 0.862 0.892 0.893 0.887 0.888 

Inverse difference moment 0.970 0.969 0.954 0.920 0.827 

Intensity variability 0.754 0.742 0.751 0.772 0.748 

Run-length variability 0.839 0.883 0.865 0.844 0.811 

TLG 0.792 0.792 0.789 0.796 0.792 

 SUVmean 

Minimum SUV 0.731 0.731 0.736 0.704 0.731 

Maximum SUV 0.801 0.801 0.811 0.756 0.801 

SUV SD 0.865 0.865 0.870 0.850 0.865 

 SUVmax 

Mean SUV 0.801 0.801 0.811 0.756 0.801 

SUV Variance 0.836 0.836 0.796 0.876 0.836 

SUV SD 0.930 0.930 0.932 0.929 0.930 

 
 

Table II. Spearman correlation between texture features and the most commonly used PET quantitative metrics. 

The table shows variable degree of associations being higher and moderate correlation coefficient. 
Moderate correlation 

Variable 
Correlation Coefficient (Spearman’s rho, ρ) 

TLG 
4 8 16 32 64 

Intensity variability 0.529 0.519 0.530 0.565 0.581 

Run-length variability 0.632 0.700 0.677 0.670 0.681 

Maximum SUV 0.530 0.530 0.528 0.527 0.530 

Mean SUV 0.502 0.502 0.500 0.502 0.502 

SUV Variance 0.583 0.583 0.579 0.587 0.583 

SUV SD 0.582 0.582 0.546 0.590 0.582 

 Surface area 

Entropy -0.526 -0.531 -0.520 -0.553 -0.543 

Homogeneity 0.543 0.545 0.527 0.560 0.539 

Inverse difference moment 0.543 0.547 0.531 0.557 0.504 

Tumor volume 0.635 0.635 0.627 0.641 0.635 

 MTV 

Long run emphasis 0.5 0.501 0.588 0.672 0.634 

Low-intensity long-run emphasis 0.5 0.503 0.593 0.677 0.636 

Surface area 0.635 0.635 0.627 0.641 0.635 

 SUVmean 

SUV Variance 0.655 0.655 0.636 0.653 0.655 

TLG 0.502 0.502 0.501 0.502 0.502 

 SUVmax 

TLG 0.530 0.530 0.525 0.527 0.530 
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ي مرضى سرطان الغدد الليمفاوية البياناتدور تحليل   
ى

ي التنبؤ بتسلل النخاع العظمي ف
ى

والراديومكس ف  

ي حمدي البهنساوي 1، محمود حسن عبد الجواد2، مجدي محمد خليل1محمود عبد الحافظ قناوي
ى

 1وهان

ياء الحيوية   .1 ز ياء  -شعبة الفي  ز ( كلية  –قسم الفي  ز  مصر.   –القاهرة  -مدينة نصر   –جامعة الأزهر  -  العلوم )بني 

ياء  .2 ز ز حلوان  –جامعة حلوان   -كلية العلوم    –قسم الفي   مصر.  – القاهرة  - عي 

 

 الغرض

ات الكمية  استكشاف قدرة   ز ات المستخرجةالمي  ي تمايز تسلل نخاع العظم    من الصور الطبية  ومعلومات المتغي 
فز

ي  عن طريق التصوير المقطعي 
ونز ي سرطان الغدد الليمفاوية.   (PET/CT) بالإصدار البوزيير

   لمرضز

 المواد والطرق

ا يعانون من سرطان الغدد الليمفاوية المثبت   44لـ  PET/CT تقييم فحص هذه الدراسة شملت 
ً
مريض

 بأثر رجعي هيستوباثولوجي
ً
ز و  ا ( تم استخراج ثلاثة وسبعي  ة كمية )متغي  ز ل  ستخدام تطبيق خاص بمجاإبمي 

ي  " ”CGITA معالجة الصور الطبية
 Statistical Package for على برنامج عليها وتم إجراء التحليل الإحصان 

the Social Sciences ““SPSS. 

 النتائج

ات المستخرجة من الصور رتباط لإتحليل ا أظهر  ز  لبعض المتغي  عن وجود علاقة إيجابية طردية قوية بي 

ي مقايي  المستخدمةالتقليدية   PET مقاييس
  وحيد ذو علاقة  تم العثور على ارتباطس وجود المرض كذلك فز

أن   ROC” (area under the curve “AUC”)“ يات اختبار منحنأظهرت المنطقة الواقعة أسفل ة؛ و عكسي

ي وهي 
ات المستخرجة من صور المرضز  :ثمانية من المتغي 

(HILRE (4-bin),  HILZE (64-bin), LRE (64-bin),  LZE (64-bin), max spectrum (8-bin),   

busyness (64-bin), code similarity (32-bin & 64-bin)) 

ز  ( <0.682AUC) لتسلل نخاع العظامت ذات تنبؤ كان ات المن بي  ز أقل  p-value قيمةلها وكانت  خرىالأ مي 

اتأظهرت التحليلات أحادية المتغي  للمكما   ؛0.05من    : المستخرجة أن تغي 

 (code similarity & LRE (both 64 bin))   ؛كذلك أظهرت  بتسلل المرض لنخاع العظملهما تنبؤ كبي

ات أن المتغي    : التحليلات متعددة المتغي 

 (LRE (64 bin))  لهوالذي كانت(p= 0.031; odds ratio: 1.022; 95% CI, 1.002-1.043)     
ً
ا كان متغي 

ي سرطان الغدد الليمفاو 
 لتسلل نخاع العظم فز

ً
 .يةمستقلا

  الاستنتاجات

ز   اتيوجد ارتباطات قوية بي  ي سرطان الغدد الليمفاوية   PETالمستخرجة من صور    المتغي 
  وتسلل نخاع العظم فز

ات المستخرجة من صور تحليل وبالتالي فأن  ي   PET/CT المتغي 
ز تسلل نخاع العظم فز ز بي  له إمكانية التميي 

 . ”biopsy“ خذ عينة العظمأءات مرضز سرطان الغدد الليمفاوية دون الحاجة الي إجرا 
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