Study of the Effects of Naturally Occurring Radioactive Materials on Blood Indices in Blood’s Rats

Mahmoud H. Abdelgawad, Misara M. Awad, Khairy M. T. Eraba
Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.

Introduction
The radiobiological information which is related to the effects of ionizing radiation on the biological systems was limited with the experimental studies on some types of animals and radio-humanly accidents. On the other hand, these results of the effect of ionizing radiation were based on many factors. These factors are radiation types, radiation dose and radio-sensitivity of exposed tissues. Howev-er, the exposure to the ionizing radiation can led to a disturbance in the sequence of components in the biological systems. The excessive in free radicals and/or low antioxidant defense due to the exposure to the ionizing radiation can led to a disturbance in the sequence of components in the biological systems. The oxidative stress can produce chemical alterations of biomolecules causing structure and functional modifications. Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are the products of normal cellular metabolism. The harmful cellular agent for cell is the overproduction of ROS. Effect on the lipid’s concentration, protein and DNA sequence are associated also with the excessive production ROS. This harmful process is based on the interaction between radiation and water in cell.

More researches are interested with the production of cell abnormal activities due to the effect of ROS on cells. The ionizing radiation might be naturally or artificially. Nearly, soils, rocks and water include small amounts of naturally radioactive materials (e.g. Uranium, Radium, Thorium and their decay products). When a naturally radioactive material in its natural state becomes purposefully concentrated either in waste by products or in a product, it becomes technologically enhanced naturally occurring radioactive material (TENORM). According to this concept, we can be defined the TENORM as any naturally occurring materials whose radionuclide concentration or potential for human exposure has been increased above levels encountered in the natural state as a result of human activities.

The aim of this work is to investigate the potential toxicity and the potential role of naturally occurring radioactive materials (NORM) as risk factors on rat’s blood characteristics. These materials cover both naturally occurring and man-made or artificial sources. The most common material is Radon, which results from naturally-occurring 232Th and 238U and serially passing as isotopes through a number of decays till a stable isotope evolves. The aim of this study was to investigate the potential effects and the oxidative damage caused by gamma radiation emitted from naturally occurring radioactive materials with lowdose levels on the blood of male rats. Groups of adult male rats were classified and exposed to different doses result from NORM. The expected changes the changes in the concentration of total Protein, Albumin and Globulin according to the exposure were measured, in addition to the change in some hematological parameters. The results indicated that all irradiated groups showed significant decreasing in the concentration of Total Protein, Total Albumin, Total Globulin, Albumin / Globulin Ratio, the Platelets numbers (PLTs) and platelets Volume (MPV) Globulinand Albumin / Globulin Ratio and a significant decreasing in the Platelets numbers and volumes (PLTs), (MPV). At the same time, the results showed increasing in the PLTs/Lymphocytes ratio compared with control group. The results established that the exposure to TENORM dose has some deleterious effects as it observed in Albumin and Lymphocytes elevation.

In conclusion, the natural occurring radioactive materials have a significant effect on the blood system in the male rats.

Keyword: Naturally Occurring Radioactive materials, Blood Indices, Protein, Albumin, Globulin

TO UNDERSTAND the toxicity and the potential role of naturally occurring radioactive materials (NORM) as risk factors on rat’s blood characteristics. These materials cover both naturally occurring and man-made or artificial sources. The most common material is Radon, which results from naturally-occurring 232Th and 238U and serially passing as isotopes through a number of decays till a stable isotope evolves. The aim of this study was to investigate the potential effects and the oxidative damage caused by gamma radiation emitted from naturally occurring radioactive materials with lowdose levels on the blood of male rats. Groups of adult male rats were classified and exposed to different doses result from NORM. The expected changes the changes in the concentration of total Protein, Albumin and Globulin according to the exposure were measured, in addition to the change in some hematological parameters. The results indicated that all irradiated groups showed significant decreasing in the concentration of Total Protein, Total Albumin, Total Globulin, Albumin / Globulin Ratio, the Platelets numbers (PLTs) and platelets Volume (MPV) Globulinand Albumin / Globulin Ratio and a significant decreasing in the Platelets numbers and volumes (PLTs), (MPV). At the same time, the results showed increasing in the PLTs/Lymphocytes ratio compared with control group. The results established that the exposure to TENORM dose has some deleterious effects as it observed in Albumin and Lymphocytes elevation.

In conclusion, the natural occurring radioactive materials have a significant effect on the blood system in the male rats.

Keyword: Naturally Occurring Radioactive materials, Blood Indices, Protein, Albumin, Globulin

TO UNDERSTAND the toxicity and the potential role of naturally occurring radioactive materials (NORM) as risk factors on rat’s blood characteristics. These materials cover both naturally occurring and man-made or artificial sources. The most common material is Radon, which results from naturally-occurring 232Th and 238U and serially passing as isotopes through a number of decays till a stable isotope evolves. The aim of this study was to investigate the potential effects and the oxidative damage caused by gamma radiation emitted from naturally occurring radioactive materials with lowdose levels on the blood of male rats. Groups of adult male rats were classified and exposed to different doses result from NORM. The expected changes the changes in the concentration of total Protein, Albumin and Globulin according to the exposure were measured, in addition to the change in some hematological parameters. The results indicated that all irradiated groups showed significant decreasing in the concentration of Total Protein, Total Albumin, Total Globulin, Albumin / Globulin Ratio, the Platelets numbers (PLTs) and platelets Volume (MPV) Globulinand Albumin / Globulin Ratio and a significant decreasing in the Platelets numbers and volumes (PLTs), (MPV). At the same time, the results showed increasing in the PLTs/Lymphocytes ratio compared with control group. The results established that the exposure to TENORM dose has some deleterious effects as it observed in Albumin and Lymphocytes elevation.

In conclusion, the natural occurring radioactive materials have a significant effect on the blood system in the male rats.

Keyword: Naturally Occurring Radioactive materials, Blood Indices, Protein, Albumin, Globulin

TO UNDERSTAND the toxicity and the potential role of naturally occurring radioactive materials (NORM) as risk factors on rat’s blood characteristics. These materials cover both naturally occurring and man-made or artificial sources. The most common material is Radon, which results from naturally-occurring 232Th and 238U and serially passing as isotopes through a number of decays till a stable isotope evolves. The aim of this study was to investigate the potential effects and the oxidative damage caused by gamma radiation emitted from naturally occurring radioactive materials with lowdose levels on the blood of male rats. Groups of adult male rats were classified and exposed to different doses result from NORM. The expected changes the changes in the concentration of total Protein, Albumin and Globulin according to the exposure were measured, in addition to the change in some hematological parameters. The results indicated that all irradiated groups showed significant decreasing in the concentration of Total Protein, Total Albumin, Total Globulin, Albumin / Globulin Ratio, the Platelets numbers (PLTs) and platelets Volume (MPV) Globulinand Albumin / Globulin Ratio and a significant decreasing in the Platelets numbers and volumes (PLTs), (MPV). At the same time, the results showed increasing in the PLTs/Lymphocytes ratio compared with control group. The results established that the exposure to TENORM dose has some deleterious effects as it observed in Albumin and Lymphocytes elevation.

In conclusion, the natural occurring radioactive materials have a significant effect on the blood system in the male rats.

Keyword: Naturally Occurring Radioactive materials, Blood Indices, Protein, Albumin, Globulin

TO UNDERSTAND the toxicity and the potential role of naturally occurring radioactive materials (NORM) as risk factors on rat’s blood characteristics. These materials cover both naturally occurring and man-made or artificial sources. The most common material is Radon, which results from naturally-occurring 232Th and 238U and serially passing as isotopes through a number of decays till a stable isotope evolves. The aim of this study was to investigate the potential effects and the oxidative damage caused by gamma radiation emitted from naturally occurring radioactive materials with lowdose levels on the blood of male rats. Groups of adult male rats were classified and exposed to different doses result from NORM. The expected changes the changes in the concentration of total Protein, Albumin and Globulin according to the exposure were measured, in addition to the change in some hematological parameters. The results indicated that all irradiated groups showed significant decreasing in the concentration of Total Protein, Total Albumin, Total Globulin, Albumin / Globulin Ratio, the Platelets numbers (PLTs) and platelets Volume (MPV) Globulinand Albumin / Globulin Ratio and a significant decreasing in the Platelets numbers and volumes (PLTs), (MPV). At the same time, the results showed increasing in the PLTs/Lymphocytes ratio compared with control group. The results established that the exposure to TENORM dose has some deleterious effects as it observed in Albumin and Lymphocytes elevation.

In conclusion, the natural occurring radioactive materials have a significant effect on the blood system in the male rats.

Keyword: Naturally Occurring Radioactive materials, Blood Indices, Protein, Albumin, Globulin
radioprotective effects of TENORM asoxidative
damage caused by gamma-irradiation on normal
blood’s rat.

Materials and Methods

Animals preparation:

The animals were prepared to be irradiated
under as the following conditions:

Animals selection and feeding

24 Male albino rats with average weight
220±10 g, the animals were feed with normal
rat food with balanced meal. Each meal was
contained about 21% 10 ± protein.

Animals housing

The animals were housed in plastic cages and
preserved at room temperature and pressure. The
room light was controlled (12-h day/night cycle).
The cages were cleaned daily at fixed time. The
animals housing and feeding were done for this
study at the biophysics lab, faculty of science, Al- Azhar university.

Animals grouping and irradiating

The animals were randomly selected and
classified into four groups (G), each G consist
of 6 male rate. Each group was exposed to
certain dose from TENORM and Each group
was exposed to certain dose from TENORM and
the effect of every dose level on rat’s blood was
studied. TENORM doses were measured using
a calibrated *Digilert-100®* nuclear radiation
monitor, manufactured by S. E. International Co,
Inc. USA. G1 was conserved as a control for all
examinations. G2 & 3 were classified according
to the exposure for TENORM doses. For G2, the
animals of this group were exposed to TENORM
with dose rate 10 mGy/month for 30 days. The
animals of G 3 were irradiated to the same dose
rate for 60 days. For last group (G4), the animals
were exposed to another radioactive source
to compare between the effect of exposure
to different type of radioactive material with
different dose rate. This radioactive source was
137Ci with dose 0.695 Gy/minute. The delivered
dose to this group was 2 Gy is a single fraction.
The irradiation process for all groups was done
at the National Center for Radiation Research
and technologies, Egyptian Atomic Energy
Authority, EAEA.

Blood collection and Hematological parameters:

After irradiation, all groups were prepared to
anesthesia and blood collection. Diethyl Ether
solution was used to anaesthetizing process.
Investigated blood samples were accumulated
by rat’s eye puncture. Collected samples were
prevented using EDTA (ethylene di-amine
tetra-acetic acid). 12 μl of whole blood samples
were evaluated via the (*Def(3) Mek6410/Mek-
6420* hematology Analyzer system. Mean Platelet
V olume(MPV) was assessed. Lymphocyte counts
were obtained for the spleen. Also, Platelet counts
(PLTs), percentage of Lymphocytes were
assessed. The applied method for hemato logical
parameters account was *Wintrobe* protocol. [6]

Determination of Total Protein

According to Biuret method performed by
Doumas (1975), the serum of total protein was
prepared and determined. In an alkaline solution,
the total protein formed a violet to blue color with
copper ions. The absorbance for this color was
546 nm (Spectrophotometer (*UVT9000%China*).
The instrument was adjusted at zero, and the
mixture was incubated for 5 min at room
temperature before the measurement to draw up
the environmental condition. [7]

Determination of Albumin

Albumin was determined in serum according
to the method described by Doumas et al.,
(1971). Albumin reacts with Bromo cresol green
to yield green color which is can be measured
at 628 nm. The instrument was adjusted at zero.
Then, the composition mixed well and incubated
for 10 min at room temperature. Finally, the
absorbance of samples and standard against the
blank was measured. [8]

The Total Globulin fraction is generally
determined by subtracting the albumin from
the total protein.

Computational and statistical analysis

The analysis of results was done using the
computer program of Statistical Packages for
Social Science (SPSS 23) for analysis and
data comparison. The control group based as
a standard value to calculate the difference
percentage using excel program.

Results

Effects of radiation on PLTs count and volume

Figures 1(A & B) show the effect of radiation
on the mean values of PLTs counts and PLTs
volume for the investigated groups. As shown in
these figures, there is a significant decreasing in
the mean values of PLTS related to the increase
in radiation as compared with the control group.

Fig.2 illustrates the difference percentage for
G 2, 3 and 4 to G1 for PLTs counts and PLTs volume. As indicated in this figure, there is a deeply decreasing in both PLTs count and volume as the time of exposure increasing and/or exposing for gamma ray radiation from a radioactive source. The difference percentage in PLTs count in G 2, 3 & 4 to G1 were -2.68, -9.40 and -18.62 %, while they were -4.06, -12.28 and -19.13 % for PLTs volume respectively.

Effects of radiation on percentage of Lymphocytes

Figure 3 shows the effect of radiation of TENORM and Gamma rays on the percentage of lymphocytes in the blood’s rats. The percentage of lymphocytes in the control group was (80.10 %) as a normal value. After irradiating other groups, the percentage values of Lymphocytes showed decreasing with the increasing for TENORM or gamma radiation. The values were (80.1, 72.78, 66.48, 59) for G 1, 2, 3 and 4 respectively.
Effect of radiation on the PLTs to lymphocyte (PLTs/Lymphocytes) ratio

Figure 4 describes the effect of radiation on the PLTs to lymphocyte ratio. As indicated in this figure, there was an increasing with (7%) in the PLTs to lymphocyte ratio between the values of G1 as a control group and G2 which was exposed to 30 days TENORM, also there a slightly increasing (9%) for G3 & (10%) for G4 whose were exposed to 60 days TENORM and 2Gy of gamma ray respectively compared with G1.

Effect of radiation on the blood protein, Albumin and Globulin concentrations

Figure 5 shows the effect of radiation on Protein, Albumin and Globulin of the investigated groups.

As shown in this figure, the Protein concentration for examined groups compared with the control decreased gradually. The concentration difference percentage for G2, 3 and 4 compared with G1 were (8%, 24% and 36%) respectively. Also, this figure indicates that there was a significant drop in the concentration of blood Albumin. The difference percentage between G2 to G1 was (13%), while it was (33%) and (47%) difference between G3 to G1 and G4 to G1 respectively. The effect of radiation on the Globulin concentration of G2, 3 and 4 showed slightly differences compared with the concentration of Protein and Albumin as shown in figure 5. The statistical differences in the concentration of Globulin indicated that there were 2.1% difference between G2 to G1, 8.8% between G3 to G1 and 18% between G4 to G1.

Effect of radiation on blood Albumin to Globulin (A/G) ratio

Figure 6 explains the effect of radiation on the Albumin to Globulin ratio. As indicated in this figure, there is a significant decreasing with (11%) in the Albumin to Globulin ratio between the values of G1 as a control group and G2 while there is a fall with (28%) for G3 & (35%) for G4 respectively compared with G1.
Fig. 5. Concentration of Protein, Albumin and globulin for all groups.

Fig. 6. Effect of radiation on the Albumin to Globulin ratio.

Discussion

The results showed that there were changes in the normality of rat’s blood due to the exposure to radiation. The decreasing in PLTs count and MPV is accompanied with decreasing in erythrocyte count. The harmful effects of radiation on RBCs count may be associated with the cessation of erythrocytes’ production in the bone marrow additional to the loss of cells from the circulation blood system by hemorrhage or leakage through the capillary walls, and the direct destruction of mature circulating cells. Based on that, the decreasing in the normal values of blood indices following radiation exposure may be assigned to directly damage caused by a fatal dose of ionizing radiation \(^{[9]}\). (Moroni et al., 2011) demonstrated when they examined the effect of radiation on the mini pigs, they found that the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios are particularly very important prognostic indicators of irradiation in mini animals \(^{[9]}\). On the other hand, the decreasing in total protein may be attributed to a damage in vital processes or due to the change in the liver functionality or kidney permeability or immune deficiency and other tissues resulting in leakage of protein via the kidney \(^{[11]}\). The changes in the values of hematological parameters like PLTs count, MPV, percentage of Lymphocytes, and the ratio of PLTs/ Lymphocytes, may be the first indicator for an abnormal biological system. Our results in agree with Abbady et al., 2000who reported in their publication that there was a decline in the level of serum in animals exposed to whole body irradiation with gamma ray at different times of exposure and different doses\(^{[12]}\). A deeply decreasing was also noticed in serum of Albumin concentration in Karalenka et al., 1993,
with agreement with our results[13]. Based on our results, it’s worth mention that the decreasing in total protein, Albumin and Globulin may be attributed to an impairment in the production of protein in liver due to hepato-cells damage[14-15]. In another studies, Keren et al., 1994, and Lessard et al., 1985, stated that the excessive loss through injury to kidneys may be the reason of the decreasing in Albumin concentration [16-17]. Choldhari and Chakrabati, 1983 mentioned that the decreasing in Albumin and Globulin could be related with hepatic disfunction [18]. These defects in the biological process might be the partially responsible for protein decreasing after radio-exposing.

Conclusion

This study aimed to investigate the effect of TENORM exposure for one month and two months, also the effect of 2 Gy from gamma rays source on the blood indices and concentration of Protein, Globulin and Albumin in rat’s blood. The results indicated that there were significant changes in the biological process in these parameters. Further investigations studies are needed on the effects of chronic ionizing radiation irradiation with different doses and periods. Based on our results that there are harmful effects on blood indices and concentration of Protein, Globulin and Albumin elevation in rat’s blood according to the exposure for TENORM dose. TE-NORM exposure for one and two months resulted in highly production of free radicals with subsequent elevation in total proteins and deleterious effects on red blood cells.

References

2. Mustafa Cengiz, Murat Gurkaynak; HüseyinVural; Nurten Aksoy; Beyhan Cengiz; FerahYildiz; LaleAtahan I.(2003).”Tissue Trace Element Change after Total Body Irradiation”, Experimental Nephrology, 49 (1).
STUDY OF THE EFFECTS OF NATURALLY OCCURRING RADIOACTIVE MATERIALS

(Recieved 3/2/2019; accepted 13/2/2019)